Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 33: 391-403, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37547291

RESUMO

Microcell-mediated chromosome transfer is an attractive technique for transferring chromosomes from donor cells to recipient cells and has enabled the generation of cell lines and humanized animal models that contain megabase-sized gene(s). However, improvements in chromosomal transfer efficiency are still needed to accelerate the production of these cells and animals. The chromosomal transfer protocol consists of micronucleation, microcell formation, and fusion of donor cells with recipient cells. We found that the combination of Taxol (paclitaxel) and reversine rather than the conventional reagent colcemid resulted in highly efficient micronucleation and substantially improved chromosomal transfer efficiency from Chinese hamster ovary donor cells to HT1080 and NIH3T3 recipient cells by up to 18.3- and 4.9-fold, respectively. Furthermore, chromosome transfer efficiency to human induced pluripotent stem cells, which rarely occurred with colcemid, was also clearly improved after Taxol and reversine treatment. These results might be related to Taxol increasing the number of spindle poles, leading to multinucleation and delaying mitosis, and reversine inducing mitotic slippage and decreasing the duration of mitosis. Here, we demonstrated that an alternative optimized protocol improved chromosome transfer efficiency into various cell lines. These data advance chromosomal engineering technology and the use of human artificial chromosomes in genetic and regenerative medical research.

2.
Sci Rep ; 13(1): 4225, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918661

RESUMO

We previously generated fully human antibody-producing TC-mAb mice for obtaining potential therapeutic monoclonal antibodies (mAbs). In this study, we investigated 377 clones of fully human mAbs against a tumor antigen, epithelial cell adhesion molecule (EpCAM), to determine their antigen binding properties. We revealed that a wide variety of mAbs against EpCAM can be obtained from TC-mAb mice by the combination of epitope mapping analysis of mAbs to EpCAM and native conformational recognition analysis. Analysis of 72 mAbs reacting with the native form of EpCAM indicated that the EpCL region (amino acids 24-80) is more antigenic than the EpRE region (81-265), consistent with numerous previous studies. To evaluate the potential of mAbs against antibody-drug conjugates, mAbs were directly labeled with DM1, a maytansine derivative, using an affinity peptide-based chemical conjugation (CCAP) method. The cytotoxicity of the conjugates against a human colon cancer cell line could be clearly detected with high-affinity as well as low-affinity mAbs by the CCAP method, suggesting the advantage of this method. Thus, this study demonstrated that TC-mAb mice can provide a wide variety of antibodies and revealed an effective way of identifying candidates for fully human ADC therapeutics.


Assuntos
Neoplasias do Colo , Imunoconjugados , Humanos , Camundongos , Animais , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Molécula de Adesão da Célula Epitelial , Antígenos de Neoplasias , Neoplasias do Colo/patologia , Anticorpos Monoclonais
3.
Sci Rep ; 11(1): 20050, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625612

RESUMO

Mammalian artificial chromosomes derived from native chromosomes have been applied to biomedical research and development by generating cell sources and transchromosomic (Tc) animals. Human artificial chromosome (HAC) is a precedent chromosomal vector which achieved generation of valuable humanized animal models for fully human antibody production and human pharmacokinetics. While humanized Tc animals created by HAC vector have attained significant contributions, there was a potential issue to be addressed regarding stability in mouse tissues, especially highly proliferating hematopoietic cells. Mouse artificial chromosome (MAC) vectors derived from native mouse chromosome 11 demonstrated improved stability, and they were utilized for humanized Tc mouse production as a standard vector. In mouse, however, stability of MAC vector derived from native mouse chromosome other than mouse chromosome 11 remains to be evaluated. To clarify the potential of mouse centromeres in the additional chromosomes, we constructed a new MAC vector from native mouse chromosome 10 to evaluate the stability in Tc mice. The new MAC vector was transmitted through germline and stably maintained in the mouse tissues without any apparent abnormalities. Through this study, the potential of additional mouse centromere was demonstrated for Tc mouse production, and new MAC is expected to be used for various applications.


Assuntos
Cromossomos Artificiais , Cromossomos/genética , Células-Tronco Embrionárias/metabolismo , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Vetores Genéticos/genética , Recombinação Genética , Animais , Centrômero , Células-Tronco Embrionárias/citologia , Feminino , Células Germinativas , Masculino , Camundongos , Camundongos Endogâmicos ICR
4.
PLoS One ; 13(3): e0193642, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29505588

RESUMO

Mouse artificial chromosome (MAC) vectors have several advantages as gene delivery vectors, such as stable and independent maintenance in host cells without integration, transferability from donor cells to recipient cells via microcell-mediated chromosome transfer (MMCT), and the potential for loading a megabase-sized DNA fragment. Previously, a MAC containing a multi-integrase platform (MI-MAC) was developed to facilitate the transfer of multiple genes into desired cells. Although the MI system can theoretically hold five gene-loading vectors (GLVs), there are a limited number of drugs available for the selection of multiple-GLV integration. To overcome this issue, we attempted to knock out and reuse drug resistance genes (DRGs) using the CRISPR-Cas9 system. In this study, we developed new methods for multiple-GLV integration. As a proof of concept, we introduced five GLVs in the MI-MAC by these methods, in which each GLV contained a gene encoding a fluorescent or luminescent protein (EGFP, mCherry, BFP, Eluc, and Cluc). Genes of interest (GOI) on the MI-MAC were expressed stably and functionally without silencing in the host cells. Furthermore, the MI-MAC carrying five GLVs was transferred to other cells by MMCT, and the resultant recipient cells exhibited all five fluorescence/luminescence signals. Thus, the MI-MAC was successfully used as a multiple-GLV integration vector using the CRISPR-Cas9 system. The MI-MAC employing these methods may resolve bottlenecks in developing multiple-gene humanized models, multiple-gene monitoring models, disease models, reprogramming, and inducible gene expression systems.


Assuntos
Sistemas CRISPR-Cas/genética , Cromossomos Artificiais/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Animais , Células CHO , Cricetulus , Técnicas de Inativação de Genes , Camundongos , Mutação
5.
Sci Rep ; 7(1): 15189, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123154

RESUMO

Cytochrome P450, family 3, subfamily A (CYP3A) enzymes metabolize approximately 50% of commercially available drugs. Recently, we developed fully humanized transchromosomic (Tc) CYP3A mice with the CYP3A cluster including CYP3A4, CYP3A5, CYP3A7, and CYP3A43. Our humanized CYP3A mice have the CYP3A5*3 (g.6986G) allele, resulting in the almost absence of CYP3A5 protein expression in the liver and intestine. To produce model mice for predicting CYP3A5's contribution to pharmacokinetics, we performed a single-nucleotide polymorphism (SNP) modification of CYP3A5 (g.6986G to A, *3 to *1) on the CYP3A cluster using genome editing in  both mouse ES cells and fertilized eggs, and produced humanized CYP3A5*1 mice recapitulating the CYP3A5*1 carrier phenotype in humans. The humanized CYP3A mouse with CYP3A5*1 is the first Tc mouse for predicting the SNP effect on pharmacokinetics in humans. The combination of Tc technology and genome editing enables the production of useful humanized models that reflect humans with different SNPs.


Assuntos
Citocromo P-450 CYP3A/genética , Edição de Genes , Modelos Animais , Farmacogenética/métodos , Polimorfismo de Nucleotídeo Único , Animais , Animais Geneticamente Modificados , Humanos , Camundongos
6.
Stem Cell Reports ; 9(4): 1180-1191, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28943251

RESUMO

The introduction of megabase-sized large DNA fragments into the germline has been a difficult task. Although microcell-mediated chromosome transfer into mouse embryonic stem cells (ESCs) allows the production of transchromosomic mice, ESCs have unstable karyotypes and germline transmission is unreliable by chimera formation. As spermatogonial stem cells (SSCs) are the only stem cells in the germline, they represent an attractive target for germline modification. Here, we report successful transfer of a mouse artificial chromosome (MAC) into mouse germline stem cells (GSCs), cultured spermatogonia enriched for SSCs. MAC-transferred GSCs maintained the host karyotype and MAC more stably than ESCs, which have significant variation in chromosome number. Moreover, MAC-transferred GSCs produced transchromosomic mice following microinjection into the seminiferous tubules of infertile recipients. Successful transfer of MACs to GSCs overcomes the problems associated with ESC-mediated germline transmission and provides new possibilities in germline modification.


Assuntos
Cromossomos Artificiais , Técnicas de Transferência de Genes , Espermatogônias/citologia , Espermatogônias/metabolismo , Animais , Biomarcadores , Rastreamento de Células , Expressão Gênica , Genes Reporter , Instabilidade Genômica , Imunofenotipagem , Cariótipo , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Fenótipo , Espermatogênese
7.
Sci Rep ; 4: 6136, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25159877

RESUMO

Infants with Down syndrome (DS) are at a high risk of developing transient abnormal myelopoiesis (TAM). A GATA1 mutation leading to the production of N-terminally truncated GATA1 (GATA1s) in early megakaryocyte/erythroid progenitors is linked to the onset of TAM and cooperated with the effect of trisomy 21 (Ts21). To gain insights into the underlying mechanisms of the progression to TAM in DS patients, we generated human pluripotent stem cells harbouring Ts21 and/or GATA1s by combining microcell-mediated chromosome transfer and genome editing technologies. In vitro haematopoietic differentiation assays showed that the GATA1s mutation blocked erythropoiesis irrespective of an extra chromosome 21, while Ts21 and the GATA1s mutation independently perturbed megakaryopoiesis and the combination of Ts21 and the GATA1s mutation synergistically contributed to an aberrant accumulation of skewed megakaryocytes. Thus, the DS model cells generated by these two technologies are useful in assessing how GATA1s mutation is involved in the onset of TAM in patients with DS.


Assuntos
Síndrome de Down/fisiopatologia , Hematopoese , Células-Tronco Pluripotentes Induzidas/fisiologia , Reação Leucemoide/fisiopatologia , Animais , Células Cultivadas , Cromossomos Humanos Par 21/genética , Síndrome de Down/genética , Fator de Transcrição GATA1/genética , Engenharia Genética , Genoma Humano , Humanos , Reação Leucemoide/genética , Camundongos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...